TTS synthesis with bidirectional LSTM based recurrent neural networks

نویسندگان

  • Yuchen Fan
  • Yao Qian
  • Feng-Long Xie
  • Frank K. Soong
چکیده

Feed-forward, Deep neural networks (DNN)-based text-tospeech (TTS) systems have been recently shown to outperform decision-tree clustered context-dependent HMM TTS systems [1, 4]. However, the long time span contextual effect in a speech utterance is still not easy to accommodate, due to the intrinsic, feed-forward nature in DNN-based modeling. Also, to synthesize a smooth speech trajectory, the dynamic features are commonly used to constrain speech parameter trajectory generation in HMM-based TTS [2]. In this paper, Recurrent Neural Networks (RNNs) with Bidirectional Long Short Term Memory (BLSTM) cells are adopted to capture the correlation or co-occurrence information between any two instants in a speech utterance for parametric TTS synthesis. Experimental results show that a hybrid system of DNN and BLSTM-RNN, i.e., lower hidden layers with a feed-forward structure which is cascaded with upper hidden layers with a bidirectional RNN structure of LSTM, can outperform either the conventional, decision tree-based HMM, or a DNN TTS system, both objectively and subjectively. The speech trajectory generated by the BLSTM-RNN TTS is fairly smooth and no dynamic constraints are needed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bidirectional LSTM Networks for Improved Phoneme Classification and Recognition

In this paper, we carry out two experiments on the TIMIT speech corpus with bidirectional and unidirectional Long Short Term Memory (LSTM) networks. In the first experiment (framewise phoneme classification) we find that bidirectional LSTM outperforms both unidirectional LSTM and conventional Recurrent Neural Networks (RNNs). In the second (phoneme recognition) we find that a hybrid BLSTM-HMM s...

متن کامل

Deep Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction

Short-term traffic forecasting based on deep learning methods, especially long-term short memory (LSTM) neural networks, received much attention in recent years. However, the potential of deep learning methods is far from being fully exploited in terms of the depth of the architecture, the spatial scale of the prediction area, and the prediction power of spatial-temporal data. In this paper, a ...

متن کامل

Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks

Motivation Capturing long-range interactions between structural but not sequence neighbors of proteins is a long-standing challenging problem in bioinformatics. Recently, long short-term memory (LSTM) networks have significantly improved the accuracy of speech and image classification problems by remembering useful past information in long sequential events. Here, we have implemented deep bidir...

متن کامل

Towards Online-Recognition with Deep Bidirectional LSTM Acoustic Models

Online-Recognition requires the acoustic model to provide posterior probabilities after a limited time delay given the online input audio data. This necessitates unidirectional modeling and the standard solution is to use unidirectional long short-term memory (LSTM) recurrent neural networks (RNN) or feedforward neural networks (FFNN). It is known that bidirectional LSTMs are more powerful and ...

متن کامل

Framewise phoneme classification with bidirectional LSTM and other neural network architectures

In this paper, we present bidirectional Long Short Term Memory (LSTM) networks, and a modified, full gradient version of the LSTM learning algorithm. We evaluate Bidirectional LSTM (BLSTM) and several other network architectures on the benchmark task of framewise phoneme classification, using the TIMIT database. Our main findings are that bidirectional networks outperform unidirectional ones, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014